Characterizing Fluidization from movies using Artificial Intelligence and Clustering Techniques

Sandeep Rajput

Dr. Duane D. Bruns

- ✓ Complex processes
- ✓ Need to know the 'process state'
- ✓ Improve control and monitoring; Predict possible problems
- ✓Measurements
 - Temperature, Pressure, composition, etc.
 - Audio-Visual Information
- ✓ Utilize operator knowledge

GOAL

Design Expert System to predict 'process state' online

System Preview

✓ Fluidized bed as a complex non-linear process
✓ CFD :MFIX simulation; Daw-Halow model
■Computer code being developed by a consortium of companies
✓ Movies or strings of frames (48 x 64) : 100 every second
✓ Intricate information; high redundancy

✓ Density information on the matrix of frame
✓ 3 gas flow rates : 50, 90 and 100 cc/min
✓ Neural network or clustering methods to divine the 'state'

A typical frame in the 'movie'

Figure 1: A typical Frame 0.9 45 0.85 Zone 3 40 0.8 35 0.75 30 0.7 0.65 25 Zone 2 0.6 20 0.55 15 0.5 10 Zone 1 0.45 5 0.4 30 10 20 40 50 60

The color (scale on right) relates to void fraction, or fraction of gas

Stills from the 'movie'

Figure 3 : Frames for flow rate of 90 cm/s

Frame 1100

Frame 1105

Frame 1110

Frame 1115

Frame 1120

Frame 1125

Frame 1130

Frame 1135

Frame 1140

Frame 1145

-		
Frame	11	50

Frame 1155

Frame 1160

Frame 1165

Frame 1170

Frame 1175

Frame 1180

Frame 1185

Frame 1190

Frame 1195

Frame 1210

Frame 1215

Frame 1220

Frame 1225

Frame 1230

Frame 1235

Frame 1240

Frame 1245

Void fraction time series

Dimension reduction using engineering sense

- ✓ Dimension too high. $64 \ge 48$
- ✓ Redundancy of information
- \checkmark Identify the points where most variation occurs

✓ Identify 50 pixels with highest variance
✓ Identify a zone with highest variance
✓ Zone 2 or middle zone : gas-solid interface
✓ Check for preservation of information

Dimension reduction using engineering sense

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

Figure 4: Contour plot of local variance/mean

Ratios of variances to means High (maroon) Low (Blue)

50 pixels with most variation (brown)

Spectral Power for select pixels and void fraction

Spectral power vector as the raw feature vector

Further dimension reduction using multivariate techniques

Principal Component Analysis (PCA) or K-L Transform C = covariance matrix (symmetric), then

Project vectors on principal components

Further dimension reduction using multivariate techniques

Fisher's information criterion

Discriminatory Power of each feature

$$J_{f_k}(i,j) = J_{f_k}(j,i) = \frac{\|\mu_{i,f_k} - \mu_{j,f_k}\|^2}{\sigma_{i,f_k}^2 + \sigma_{j,f_k}^2} \text{ for } k = 1,2,..L$$

Choose features with highest discriminatory power

Fischer's information criterion to reduce dimensionality

Neural Networks

✓ Mimic connections between human neurons in the brain
 ✓ Learn by back propagating the error
 ✓ Can learn non-linear or curved separation boundary
 ✓ A priori information is required
 ✓ Two ways to separate more than 2 classes

Clustering Methods

Utilizing the 'similarity' between two vectors to group them
Supervised or Unsupervised training
Can learn non-linear or curved separation boundary

- ✓ Clustering can be arbitrary
- ✓ *A priori* information not necessary

Results with clustering methods (K-means)

Zero error means correct classification

b٢

- ✓ PCA could separate different classes
- ✓ Fisher's Information Criterion is more efficient
- \checkmark Easy to separate dynamically far states
- \checkmark Hard to separate dynamically similar states
- ✓ Neural network more effective than clustering methods

- ✓ Nonlinear measures instead of power spectrum
- ✓ Wavelets
- ✓ 'Fuzzy' clustering
- ✓ Using multivariate measurements

Potential fields of application

- ✓ Track change in global dynamics
- ✓ Event Detection

Thank you!